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Rheology of gelatin solutions at the sol-gel transition
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This paper presents the results of rheological measurements of solutions of gelatin in the transition zone
preceding the gel temperature. The relaxation fundBgt) proposed by Martin, Adolf, and WilcoxadiPhys.
Rev. A 39, 1325(1989] leads to very good agreement between the experimental g4ta) and 7'(w)] and
the calculated curves. The gel strength and characteristic time are determined as a function of temperature.
[S1063-651%96)00606-X|

PACS numbgs): 82.70.Gg, 83.106-y, 83.80.Lz

I. INTRODUCTION effects. On the other hand, it does not generally have an
analytical solution and Monte Carlo methods have to be used
A gel is a giant polymer made up of molecules that arein order to exploit it 13]. Numerical analysis shows that in
branched in three dimensions and form a lattice. Gels arthe neighborhood op, the size and mass of clusters differ
commonly classified in two groups: chemical gels and physiwidely. The number of clusters of mas4 is given by the
cal gels, which are in fact different essentially through thedistribution law
nature of the bonds linking the molecules together.
If a gel is produced by a chemical reaction, the bonds n(M):MTF( M ) (1)
created are covalent bonds and the gel formed is irreversible. M*
The aggregation mechanisms in the case of physical gels do ) .
not lead to the formation of covalent bonds but, on the con-' "€ exponent depends on the dimensiaof the space, but
trary, to bonds that are reversible when thermodynamic pa?°t on the details of the system studiétie nature of the
rameters such agH, ionic strength, or temperature are lattice in particulay. _F(x) is a cutoff function thgt trun-
modified. cates the decrease in power law fdr=M*. M* is the
For many gels made up of macromolecules of biologicalMass of the ty_pica_l cluster, i.e., the cluster that makes a
origin, the formation of the lattice is achieved by means of gdominant contribution to the value of the moments of an
conformational transition from coils to helix. This is the caseOrder higher than two in the distribution. An exponential
in the formation of gelatin gels as well as, for example, infunction seems to provide a good approximation fi).
polysaccharide gelgl—4). When p increasesM* increases and diverges at the perco-
Different models have been proposed to explain the forlation threshold according to the law
mation and properties of gels. So-called classical models M* o[ p— pg| ~Ye @
were put forth by Flory and Stockmaygs,6]. A branched P~ Pe
molecule grows randomly with no constraints and withoutj, \which o is a second exponent.

formation of cycles. This is the Cayley tree or Bethe lattice  Tne correlation length, which is the radius of gyration of

model. This_ model h_as the advantage of providing a comine cluster of masdM*, also diverges at the percolation
plete analytical solution as regards the gel point and many, eshold

molecular parameters. The second model is a kinetic model
known as the kinetic gelation modgt,8]. Ex|p—pd 7. 3)

A more recent model is that proposed by Stauffer
Coniglio, and Adam[9,10] and de Genne$l11,12, who v=1/Do, whereD is the fractal dimension.
noted that the gel transition could be described using the It is possible with these hypotheses to determine the dif-
percolation model. This statistical model assumes that thé&erent moments of the mass distribution. The weight-average
monomers occupy all possible sites in a lattice with a funcimolecular weightM,, diverges at the gel point, but the
tionality equal to the number of closest neighbors. The bondsumber-average molecular weiglt, does not diverge. Sev-
are formed randomly with a probabilitp simulating the eral experimental investigations have shown that connectiv-
fraction of monomers having reacted. Wher<p. only ity properties are well described by the percolation model
small clusters are formed, whereagif p. an infinite clus- [14,15.
ter appears corresponding to the formation of a gel. The The most obvious manifestation of the sol-gel transition
value ofp. depends on the nature of the lattice and generallyconcerns mechanical properties. The dynamic viscosity
cannot be calculated exactly. The merit of this model is thatliverges as the system reaches the gel point. Immediately
it takes full account of the excluded volume and cyclizationafter this point a zero-frequency elastic moduliisappears.
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Like many molecular parameterg, andG, follow power Knowledge of the values of exponergai,n is of major
laws in the vicinity of the gel poinf16—2Q importance. Data currently available in the literature show a
certain confusion. As regards the valuespft is apparently
70%<|p—pc|° if p<pe, (40 now accepted that a wide variety of values can be obtained
experimentally[30—-32. Scalan and Winter, in particular,
Gox|p—p[! if p>pe. (5 have shown thah depends not only on the stoechiometric

) ) ] o ratio r but also on the initial molar mass of the monomers

In these relationshipsp is a parameter characterizing the 54 on their concentration when the reaction takes place in a
evqu_t|on towards the gel point. In the case of a chemicakg|,tion. In the case of cross linking of pétimethylsilox-
reaction,p represents the rate of advancement of the reacang py a tetrafunctional cross-linking agent, they obtain val-
tion. .The kinetics leading to 'gelatlon are often isothermal ;g varying from 0.2 to 0.92 depending on the experimental
and it may be assumed that in the neighborhood of the g&londitions. These experimental results seem to show that
point, the rate of advancement is a linear function of time. Inthere is no universal value of, although certain theories
thesg conditiongy can be. replacgd in the pre_vioqs equat_ionspredict a precise value of this exponent for all gels
by time. For our gelatin solutions, gelation is obtalned[[ 7,33,34.
through variation of temperature. It seems that in this case it |1 can therefore be noted that the theoretical problem
is not possible to determine the exponents since the prefagosed by the value of exponents involved in viscoelastic
tors of the equations are unknown functions of temperaturésrgperties is still an open question. The disparity observed in

As far as dynamic behavior is concerned, a large numbegynerimental results is perhaps due to the fact that the fractal

of experimental studief21-26 have shown that the com- gimensjon of the clusters is not universal but depends on the
plex shear modulu&™ follows a power law as a function of  ovironment in which they evolvis5,36.

angular frequency:

* i n
Gre(jo)’, ©) Il. EXPERIMENTAL CONDITIONS
i.e., We conducted a study of the rheological properties in a
GG ot o, ) dynamic regime of gelatin solutions as a function of tem-

perature. These studies were carried out using a Rheometrics
dynamic stress rheometer working with imposed strain. We
used a Couette-type geometry and sinusoidal periodic shear-
s=arctaiG"/G’)=nm/2. (8)  ing. The angular frequency domain used varied from'10
10% rad s *. The torque sensor available can only measure
Martin, Adolf, and Wilcoxon[27] conducted a complete torques higher than 0.2 g cm.
theoretical analysis of this phenomenon. The relaxation func- The gelatin samples were supplied by Systems Bio-

The loss angle is thus given by

tion obtained is of the form Industries. They were limed ossein extracts of weight-
average molecular weightl,,=295 000 g mol! and gel
G(t)oct~[dv/(dvEs)] (9)  temperaturel ;=36 °C. The solutions were prepared in dis-

_ _ tilled water. An antibacterial agent was systematically added.
It should be noted that a relaxation function of the same typ&nlike most of the studies carried out before this one, our

was proposed by Winter and Chamb@8,29. solutions were not quenched but were progressively cooled
Using a Fourier transform the complex shear modulus cafrom 60 °C down to the gelation temperatuifg. A previous
be calculated study[37] shows that at the highest temperatures, viscosity
. [dv/(dv+9)] and optical rotation do not change with time. On the other
G*(w)*w . (10) hand, a few degrees above the gel point an increase with time

ilb d that th its obtained using thi gel in both viscosity and optical rotation can be observed. These
It will be noted that the results obtained using this model arg;neyics reflect the progressive formation of the lattice, which

consistent with the_ experimental resu_lts. The expomett s 5 yinetic process. At each temperature a state of equilib-

the Martin-Adolf-Wilcoxon theory is given by rium is of course achievegtonstancy of viscosity and opti-

dv cal rotation, characteristic of a stationary mass distribution

n=—— (11)  of clusters. The measurements presented in this paper were,
dv+s in all cases, taken when such an equilibrium was reached.

It can also be shown, independently of any theory, that if
Egs.(4) and(5) are valid, the exponemt is closely linked to

. . . I1l. EXPERIMENTAL RESULTS
the exponents characterizing viscosity and the zero-

frequency elastic moduluG,: Figures 1 and 2 present the storage and loss modulus
curvesG'(w) and G”(w) in logarithmic scale. The concen-
u tration of the solution i€C=0.28 g cm >,
n=sru (12) It will be seen that at the highest temperatu@'sis pro-

portional tow? andG” to w over a large frequency domain.
In the framework of the analysis proposed by Martin, Adolf, On the basis of their definitions it is thus possible to deter-
and Wilcoxonu=dv. mine the viscosityry, as well as the creep compliandd:
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FIG. 3. Master curve§'(w) andG"(w). The time-temperature
4 0 | 2 log w superposition is for 39 °€T<60 °C. Thex,y axes are expressed in
decimal logarithmic scale.
FIG. 1. Storage modulu§’ (Pa as a function of the shear l0g1o(G") =10g1o(I273) + 2 logyo( w), (14
angular frequency (rad s°3), shown at different temperaturéis
C). Thex,y axes are expressed in decimal logarithmic scale. 101 G") = 10Gy4 70) + 10G1( @),
2= iim &, 5=lim & . (13  Numerical analysis of the straight lines lg@’) and
Mo ©—0 @ =0 log;((G") as a function of logy(w) leads directly to values of
7o and thend 2.
If w—0, When the temperature decreases it can be seen that the

frequency range in whicls’ and G” are respectively pro-
portional to w? and w decreases. Finally, fof =36 °C the
curves logy(G') and log«G”) versus logyw) are straight
lines with the same slope throughout the domain of acces-
sible frequencies. This temperature corresponds to the gel
point.

The G*(w) master curves in Fig. 3 have been obtained
using time-temperature superposition in the temperature
range 39 °C—60 °C. In this temperature range no evolution
of viscosity or optical rotation with time can be observed. It
can therefore be considered that the gelation process has not
begun at these temperatures. These curves reveal no rubbery
plateau and thus the molecules of gelatin in solution do not
appear to be entangled.

To analyze the results at intermediate temperatures, it is
preferable to ploty’=f(%') curves. This representation is
known as the Cole-Cole diagram. Figure 4 displays the re-
sults obtained at different temperatures. In this representation
a straight line is obtained at the gel point running through the
origin and having a slope equal to @ot/2).

IV. ANALYSIS OF THE RESULTS

If we are somewhat beneath the gel point, the decay of
G(t) will no longer be a power law. Friedrich, Heymann,
and Bergef38] have proposed empirically a relaxation func-
tion to represent the rheological behavior of systems evolv-

FIG. 2. Loss modulu§” (P3 as a function of the shear angular ing towards the gel point. This function is written
frequencyw (rad s 1), shown at different temperaturés °C). The

. . . . _ i ka—t/T
X,y axes are expressed in decimal logarithmic scale. G(t)=St “e "7, (15

|
-l 0 | 2log w
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in which 7, is a time constant anfl a quantity, which will be
defined below. It is clear that the quantitiegS,k will de-
pend on the “distance” from the gel point, i.e., in the case OfT=37.8 °C: @080, experimental points; ----, curve fitting with the

gelatin solutions, on the temperature. Friedrich-Heymann-Berger relaxation function; —, curve fittin
The advantage of the Friedrich-Heymann-Berger function y g o 9

. . ith the Martin-Adolf-Wil function.

with respect to that proposed by Winter and Chambon”" © Martin-Adofiticoxon function

[28,29 would be its ability to describe the rheological be- D 5

havior not only in the immediate vicinity of the gel point but G(t)xe V" B= S _ 2 (18)
also throughout the transition zone preceding the gel point. Dg+d 5

However, it is important to note that the two relaxation func- . . o )

tions coincide close to the gel point. #—, k—n, S—S, Although it cannot be rigorously justified, Martin, Adolf, and
and therefor@(t):Sgt’“. S, is the gel strength defined Wilcoxon propose a useful form @(t) for fitting the data:

by Winter and Chambon.

FIG. 5. %' (Pa3 versus angular frequency (rads?) at

Unlike Friedrich, Heymann, and Berger, who worked on G(t)=St ke~ 0", 19
the function G*(w), we preferred to calculate* (w). By , )
definition Close to the gel pointry—=, S— S, k—n) one once again

’ finds G(t):Sgt‘n and the complex elastic modulus is thus
o B St T (1-k) given by G* «(jw)".
7" (w)= fo G(t)e *'dt= Atjorg) Tk (16) Martin, Adolf, and Wilcoxon’s relaxation function cannot

provide a simple analytical form fo&* (w) or for #*(w) as

I represents the usual gamma function. It can be observefas the case with the Friedrich function. However, one can
that Sr3 K'(1—k) represents the viscosity, [limit of  calculate the limits values when—0:

7" (w) when w—0]. So for complex viscosity one obtains 1k g
. , T -
, e =
* =
7" (w) It jorg)t 17

The reader may have recognized the well-known Davidson- " ¢!

Cole relationship. This relationship has been widely used by
dielectricians.

A nonlinear regression program was used to determine the
best values of the three parametegs r,, andk. In Fig. 5
we have reported as an example the best cuf{{®) com-
pared with the data(T=37.8 °C) The fit is seen to be un-
satisfactory.

On the other hand, Martin, Adolf, and Wilcoxdi39],
show that at long time$>r, only the exponentially rare
clusters, withM>M* will still contribute to the decay of
G(t). These clusters are lattice animals with fractal dimen-
sionDg=2. The long-time tail 0fG(t) may be described by
the relaxation of Zimm modes of exponentially distributed FiG. 6. 5/ (Pa$ versus angular frequeney (rad s %) at differ-
lattice animals. Summing over the discrete internal modes oént temperatures. The solid curves represent calculated values with
a single lattice animal and then averaging over the distributhe parameters given in Table (the Martin-Adolf-Wilcoxon
tion of cluster size, they obtain, for the long time tail, mode).
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FIG. 7. 5’ (Pa 3 versus angular frequenay (rad s %) at differ-
ent temperatures. The solid curves represent calculated values with ¢

T T T T
the parameters given in Table (the Martin-Adolf-Wilcoxon 0 | 2 3 4 T-T 0
mode).
As G* =jwn* one obtaingG"xw if ©—0. Similarly, FIG. 8. Variations of the gel strengts versus T—Tg in
ok °C. T, is the gel temperaturex is the value ofS, calculated with
. T 2—k Eqg.(23). (If T—=T,, thenS—S,.
lim 7"=Sw —%— r(—) (21 FE@ (TT=T, 9°)
w—0 ﬁ ﬁ

. . . rapidly whenw is large, a very large number of points are
One also obtain&’=w? if w—0. The expression of the ey @ g y arg P

i be deduced f h . Itnecessary to define them correctly. Let us indicate that for
creep compliance can be deduced from the previous resulty, _q it js possible to verify the accuracy of the numerical
2 k) calculation since the results can also be obtained by means of

the analytical fornTEq. (20)].

1" R
Jo:E X ( B (22) We developed a nonlinear regression program able to de-
e s’ ,(1-k|" termine the best values & 7y,8,k. It can be seen in Fig. 5
r B that the Martin-Adolf-Wilcoxon law yields better results than
the Friedrich-Heymann-Berger law. Figures 6 and 7 show

So the only way to obtaim* from G(t) is to calculate the that we obtain very good agreement between the experimen-
Fourier transform numerically. Great care is necessary ital data[ %' (w) and 7'(w)] and the calculated curves.
carrying out the calculations. In particular the functi@t) The parameterS§,k, 8, 7, are given in Table I. This table
must be digitized over a very large time interval. Moreover,has been completed with values gf and thend? either
as the function&(t)sin(wt) andG(t)cos(wt) oscillate very  determined directly from th&s’'(w) or G"(w) curves|[Eq.

TABLE |. Best values ofS, 7y, 8, andk calculated by curve fittingthe Martin-Adolf-Wilcoxon model

The asterisks denotg, andJ2 determined directly from th&’(w) and G"(w) curves[Eq. (14)]. The other
values are calculated with EqR0) and (22).

M 32 o

T (°C) S (Pas (a0 2 pad (1072%9) B k

60 1.7% 1.15

55 2.0 1.4

50 2.4 1.8

45 3.F 2.5

42 4.0 4.8

40 3.2 5.9 10.1 5.4 0.433 0.760
39.5 3.9 6.9 10.8 7.4 0.458 0.743
39 4.5 8.2 14.1 11.2 0.464 0.730
38.7 5.0 9.7 18.6 15.1 0.448 0.725
38.4 5.6 11.6 26.9 23.0 0.439 0.714
38.1 6.2 14.3 33.3 38.1 0.455 0.706
37.8 7.1 18.4 54.9 58 0.418 0.701
374 9.2 28.6 84.3 127 0.420 0.680
37.0 11.1 59.5 196 740 0.450 0.665

36.0 18.6 0.620
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FIG. 9. Variations ofk versusT—T, in °C. T, is the gel o : ; x «
temperature:X is the value ofn calculated with Eq.(23). (If 35 40 45 5'0 5'5 60 T(°C)

T—Tg, thenk—n )

(14)] or calculated from relationship@0) and (22). FIG. 11. Increase of the creep Comp"an.l%(Pail) when the
We can see thag is nearly a constant. The mean Valuetemperature is close _to the gel temperatutecalculated with Eq.
obtained is 0.44, which is in accordance with the Martin-(m)’ @, calculated with Eq(22).
Adolf-Wilcoxon predictions(3=0.4).
We have reported in Figs. 8 and 9 the variationSaind
k versus temperature. Figures 10-12 display variations
70, 39, and 7y as a function of temperature. It can be seen
that these three quantities diverge at the gel point. However,
it is not possible to determine the corresponding critical ex-
ponents since the prefactors are unknown functions of tem-
perature.

As we have already pointed out, at the gel point the re- 1€ |0SS angléis given bys=nm/2. ~ tar(9) is indepen-
laxation function is given by(t) =Syt " After the Fourier dent ofw. This observation is used to determine reliably both

transform the following variations &’ andG” versusw are
0?btained:

G'=S,I'(1—n)cognm/2)w",

G"=8,[(1—n)sin(nm/2) ", (23)

log T(s)
n,Pas)
14
60
50 0.5
40
0._.
30_ b
-0.5
20—
-1.0
10
0 T T T T T -5 I T T T .
3 40 45 50 55 60 T(°C) 0 ' 2 3 4T-T400
FIG. 10. Increase of viscosity, (Pa 3 when the temperature is FIG. 12. Increase of the characteristic timg(s) when the tem-

close to the gel temperatur®;, calculated with Eq(14); @, calcu-  perature is close to the gel temperature. Vhexis is expressed in
lated with Eq.(20). decimal logarithmic scale.
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FIG. 13. tarid) as a function of temperatufen °C) is shown at ¢
various frequencies, along with the determination of the gel tem-
peratureTy and the critical exponernt. 0 °
the gelation temperature and the valueait the gel point. If
variations of taf¥) versus temperature are plotted at various

frequencies, one should obtain curves that intersedt;at -08 -0.6 -0.4 log C{g cm™)
The value of they axis at this point can be used to obtain

This method is useful when the gel point is not known accu-

rately or when the measurements have not been carried out FIG. 15. Variations of the gel strengf, versus concentration
rigorously atT,. Figure 13 gives an example of this deter- C (in g cm ™). The slope of the straight line is 4.5. They axes are
mination. expressed in decimal logarithmic scale.

When the determinations d&’ and G” are conducted
rigorously at the gel point, the curv€s (w) andG"(w) (on a
log-log scale are straight lines throughout the domain of
accessible frequencies. This is the case in the example given sg:ACft_ (24)
in Fig. 14. An analysis of these straight lines can also be
used to determine, as well as the value a8, [Eq. (23)]. For our gelatin solutions, Eq24) appears to be verified as
The values of5; andn obtained by this means are positioned shown in Fig. 15. The slope obtained is equal to 4.5, which is
satisfactorily on the curves giving variations ®fandk ver-  consistent with Scalan and Winter’s results.
sus temperaturéFigs. 8 and ® The exponenn obtained
when the concentration is variehetween 0.17 and 0.40 V. CONCLUSION
g cm ) is almost a constant, with mean valne-0.62.

Finally, let us recall that according to Scalan and Winter
[30], S, follows a law of the type

We conducted a complete study of the rheological prop-
erties in a dynamic regime of gelatin solutions as a function
of temperature. This study enabled us to verify that gelatin
solutions behaved like classical polymer solutions at high
temperatures. For low values of the shearing frequency, the
moduli G’ andG” are proportional tav? and w.

2.5 The master curves representing the value§bfand G”
versus w show no rubbery plateau. This important result
seems to indicate that the gelatin molecules in relatively con-
centrated solutions are not in an entangled regime.

In the vicinity of the gel point, Martin, Adolf, and Wil-
1.5 coxon’s relaxation functiorG(t) provides a very good fit
:{gggi‘ with experimental results. The gel strength and characteristic

time are determined in the whole transition zone preceding
the gel point.
At the gel point we verify that the moduls’ andG” are
0s : : ' proportional tow". The value ofn obtained does not depend
-2 a4 0 [ 2 3 logw on the concentration of the gelatin solution.

log G, log G"
3.0

2.0
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