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This paper presents the results of rheological measurements of solutions of gelatin in the transition zone
preceding the gel temperature. The relaxation functionG(t) proposed by Martin, Adolf, and Wilcoxon@Phys.
Rev. A 39, 1325~1989!# leads to very good agreement between the experimental data@h8~v! andh9~v!# and
the calculated curves. The gel strength and characteristic time are determined as a function of temperature.
@S1063-651X~96!00606-X#

PACS number~s!: 82.70.Gg, 83.10.2y, 83.80.Lz

I. INTRODUCTION

A gel is a giant polymer made up of molecules that are
branched in three dimensions and form a lattice. Gels are
commonly classified in two groups: chemical gels and physi-
cal gels, which are in fact different essentially through the
nature of the bonds linking the molecules together.

If a gel is produced by a chemical reaction, the bonds
created are covalent bonds and the gel formed is irreversible.
The aggregation mechanisms in the case of physical gels do
not lead to the formation of covalent bonds but, on the con-
trary, to bonds that are reversible when thermodynamic pa-
rameters such aspH, ionic strength, or temperature are
modified.

For many gels made up of macromolecules of biological
origin, the formation of the lattice is achieved by means of a
conformational transition from coils to helix. This is the case
in the formation of gelatin gels as well as, for example, in
polysaccharide gels@1–4#.

Different models have been proposed to explain the for-
mation and properties of gels. So-called classical models
were put forth by Flory and Stockmayer@5,6#. A branched
molecule grows randomly with no constraints and without
formation of cycles. This is the Cayley tree or Bethe lattice
model. This model has the advantage of providing a com-
plete analytical solution as regards the gel point and many
molecular parameters. The second model is a kinetic model
known as the kinetic gelation model@7,8#.

A more recent model is that proposed by Stauffer
Coniglio, and Adam@9,10# and de Gennes@11,12#, who
noted that the gel transition could be described using the
percolation model. This statistical model assumes that the
monomers occupy all possible sites in a lattice with a func-
tionality equal to the number of closest neighbors. The bonds
are formed randomly with a probabilityp simulating the
fraction of monomers having reacted. Whenp,pc only
small clusters are formed, whereas ifp.pc an infinite clus-
ter appears corresponding to the formation of a gel. The
value ofpc depends on the nature of the lattice and generally
cannot be calculated exactly. The merit of this model is that
it takes full account of the excluded volume and cyclization

effects. On the other hand, it does not generally have an
analytical solution and Monte Carlo methods have to be used
in order to exploit it@13#. Numerical analysis shows that in
the neighborhood ofpc the size and mass of clusters differ
widely. The number of clusters of massM is given by the
distribution law

n~M !5M2tFS M

M* D . ~1!

The exponentt depends on the dimensiond of the space, but
not on the details of the system studied~the nature of the
lattice in particular!. F(x) is a cutoff function that trun-
cates the decrease in power law forM5M* . M* is the
mass of the typical cluster, i.e., the cluster that makes a
dominant contribution to the value of the moments of an
order higher than two in the distribution. An exponential
function seems to provide a good approximation forF(x).
Whenp increases,M* increases and diverges at the perco-
lation threshold according to the law

M*}up2pcu21/s ~2!

in which s is a second exponent.
The correlation length, which is the radius of gyration of

the cluster of massM* , also diverges at the percolation
threshold

j}up2pcu2n. ~3!

n51/Ds, whereD is the fractal dimension.
It is possible with these hypotheses to determine the dif-

ferent moments of the mass distribution. The weight-average
molecular weightMw diverges at the gel point, but the
number-average molecular weightMn does not diverge. Sev-
eral experimental investigations have shown that connectiv-
ity properties are well described by the percolation model
@14,15#.

The most obvious manifestation of the sol-gel transition
concerns mechanical properties. The dynamic viscosityh0
diverges as the system reaches the gel point. Immediately
after this point a zero-frequency elastic modulusG0 appears.
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Like many molecular parameters,h0 andG0 follow power
laws in the vicinity of the gel point@16–20#

h0}up2pcu2s if p,pc, ~4!

G0}up2pcuu if p.pc . ~5!

In these relationships,p is a parameter characterizing the
evolution towards the gel point. In the case of a chemical
reaction,p represents the rate of advancement of the reac-
tion. The kinetics leading to gelation are often isothermal
and it may be assumed that in the neighborhood of the gel
point, the rate of advancement is a linear function of time. In
these conditions,p can be replaced in the previous equations
by time. For our gelatin solutions, gelation is obtained
through variation of temperature. It seems that in this case it
is not possible to determine the exponents since the prefac-
tors of the equations are unknown functions of temperature.

As far as dynamic behavior is concerned, a large number
of experimental studies@21–26# have shown that the com-
plex shear modulusG* follows a power law as a function of
angular frequencyv:

G*}~ jv!n, ~6!

i.e.,

G8}G9}vn. ~7!

The loss angle is thus given by

d5arctan~G9/G8!5np/2. ~8!

Martin, Adolf, and Wilcoxon@27# conducted a complete
theoretical analysis of this phenomenon. The relaxation func-
tion obtained is of the form

G~ t !}t2@dn/~dn1s!#. ~9!

It should be noted that a relaxation function of the same type
was proposed by Winter and Chambon@28,29#.

Using a Fourier transform the complex shear modulus can
be calculated

G* ~v!}v@dn/~dn1s!#. ~10!

It will be noted that the results obtained using this model are
consistent with the experimental results. The exponentn in
the Martin-Adolf-Wilcoxon theory is given by

n5
dn

dn1s
. ~11!

It can also be shown, independently of any theory, that if
Eqs.~4! and~5! are valid, the exponentn is closely linked to
the exponents characterizing viscosityh0 and the zero-
frequency elastic modulusG0:

n5
u

s1u
. ~12!

In the framework of the analysis proposed by Martin, Adolf,
and Wilcoxonu5dv.

Knowledge of the values of exponentss,u,n is of major
importance. Data currently available in the literature show a
certain confusion. As regards the values ofn, it is apparently
now accepted that a wide variety of values can be obtained
experimentally@30–32#. Scalan and Winter, in particular,
have shown thatn depends not only on the stoechiometric
ratio r but also on the initial molar mass of the monomers
and on their concentration when the reaction takes place in a
solution. In the case of cross linking of poly~dimethylsilox-
ane! by a tetrafunctional cross-linking agent, they obtain val-
ues varying from 0.2 to 0.92 depending on the experimental
conditions. These experimental results seem to show that
there is no universal value ofn, although certain theories
predict a precise value of this exponent for all gels
@27,33,34#.

It can therefore be noted that the theoretical problem
posed by the value of exponents involved in viscoelastic
properties is still an open question. The disparity observed in
experimental results is perhaps due to the fact that the fractal
dimension of the clusters is not universal but depends on the
environment in which they evolve@35,36#.

II. EXPERIMENTAL CONDITIONS

We conducted a study of the rheological properties in a
dynamic regime of gelatin solutions as a function of tem-
perature. These studies were carried out using a Rheometrics
dynamic stress rheometer working with imposed strain. We
used a Couette-type geometry and sinusoidal periodic shear-
ing. The angular frequency domain used varied from 1021 to
102 rad s21. The torque sensor available can only measure
torques higher than 0.2 g cm.

The gelatin samples were supplied by Systems Bio-
Industries. They were limed ossein extracts of weight-
average molecular weightMw5295 000 g mol21 and gel
temperatureTg536 °C. The solutions were prepared in dis-
tilled water. An antibacterial agent was systematically added.
Unlike most of the studies carried out before this one, our
solutions were not quenched but were progressively cooled
from 60 °C down to the gelation temperatureTg . A previous
study @37# shows that at the highest temperatures, viscosity
and optical rotation do not change with time. On the other
hand, a few degrees above the gel point an increase with time
in both viscosity and optical rotation can be observed. These
kinetics reflect the progressive formation of the lattice, which
is a kinetic process. At each temperature a state of equilib-
rium is of course achieved~constancy of viscosity and opti-
cal rotation!, characteristic of a stationary mass distribution
of clusters. The measurements presented in this paper were,
in all cases, taken when such an equilibrium was reached.

III. EXPERIMENTAL RESULTS

Figures 1 and 2 present the storage and loss modulus
curvesG8~v! andG9~v! in logarithmic scale. The concen-
tration of the solution isC50.28 g cm23.

It will be seen that at the highest temperaturesG8 is pro-
portional tov2 andG9 to v over a large frequency domain.
On the basis of their definitions it is thus possible to deter-
mine the viscosityh0 as well as the creep complianceJ e

0:
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Je
05 1

h0
2 lim

v→0
G8
v2 , h05 lim

v→0
G9
v
. ~13!

If v→0,

log10~G8!5 log10~Je
0h0

2!12 log10~v!, ~14!

log10~G9!5 log10~h0!1 log10~v!,

Numerical analysis of the straight lines log10~G8! and
log10~G9! as a function of log10~v! leads directly to values of
h0 and thenJ e

0.
When the temperature decreases it can be seen that the

frequency range in whichG8 andG9 are respectively pro-
portional tov2 andv decreases. Finally, forT536 °C the
curves log10~G8! and log10~G9! versus log10~v! are straight
lines with the same slope throughout the domain of acces-
sible frequencies. This temperature corresponds to the gel
point.

The G* ~v! master curves in Fig. 3 have been obtained
using time-temperature superposition in the temperature
range 39 °C–60 °C. In this temperature range no evolution
of viscosity or optical rotation with time can be observed. It
can therefore be considered that the gelation process has not
begun at these temperatures. These curves reveal no rubbery
plateau and thus the molecules of gelatin in solution do not
appear to be entangled.

To analyze the results at intermediate temperatures, it is
preferable to ploth95f ~h8! curves. This representation is
known as the Cole-Cole diagram. Figure 4 displays the re-
sults obtained at different temperatures. In this representation
a straight line is obtained at the gel point running through the
origin and having a slope equal to cot~np/2!.

IV. ANALYSIS OF THE RESULTS

If we are somewhat beneath the gel point, the decay of
G(t) will no longer be a power law. Friedrich, Heymann,
and Berger@38# have proposed empirically a relaxation func-
tion to represent the rheological behavior of systems evolv-
ing towards the gel point. This function is written

G~ t !5St2ke2t/t0, ~15!

FIG. 1. Storage modulusG8 ~Pa! as a function of the shear
angular frequencyv ~rad s21!, shown at different temperatures~in
°C!. Thex,y axes are expressed in decimal logarithmic scale.

FIG. 2. Loss modulusG9 ~Pa! as a function of the shear angular
frequencyv ~rad s21!, shown at different temperatures~in °C!. The
x,y axes are expressed in decimal logarithmic scale.

FIG. 3. Master curvesG8~v! andG9~v!. The time-temperature
superposition is for 39 °C,T,60 °C. Thex,y axes are expressed in
decimal logarithmic scale.
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in which t0 is a time constant andS a quantity, which will be
defined below. It is clear that the quantitiest0,S,k will de-
pend on the ‘‘distance’’ from the gel point, i.e., in the case of
gelatin solutions, on the temperature.

The advantage of the Friedrich-Heymann-Berger function
with respect to that proposed by Winter and Chambon
@28,29# would be its ability to describe the rheological be-
havior not only in the immediate vicinity of the gel point but
also throughout the transition zone preceding the gel point.
However, it is important to note that the two relaxation func-
tions coincide close to the gel point. Ift0→`, k→n, S→Sg ,
and thereforeG(t)5Sgt

2n. Sg is the gel strength defined
by Winter and Chambon.

Unlike Friedrich, Heymann, and Berger, who worked on
the functionG* ~v!, we preferred to calculateh* ~v!. By
definition,

h* ~v!5E
0

`

G~ t !e2 jvtdt5
St0

12kG~12k!

~11 jvt0!
12k . ~16!

G represents the usual gamma function. It can be observed
that St 0

12kG(12k) represents the viscosityh0 @limit of
h* ~v! whenv→0#. So for complex viscosity one obtains

h* ~v!5
h0

~11 jvt0!
12k . ~17!

The reader may have recognized the well-known Davidson-
Cole relationship. This relationship has been widely used by
dielectricians.

A nonlinear regression program was used to determine the
best values of the three parametersh0, t0, andk. In Fig. 5
we have reported as an example the best curveh9~v! com-
pared with the data.~T537.8 °C.! The fit is seen to be un-
satisfactory.

On the other hand, Martin, Adolf, and Wilcoxon@39#,
show that at long timest.t0 only the exponentially rare
clusters, withM@M* will still contribute to the decay of
G(t). These clusters are lattice animals with fractal dimen-
sionDS52. The long-time tail ofG(t) may be described by
the relaxation of Zimm modes of exponentially distributed
lattice animals. Summing over the discrete internal modes of
a single lattice animal and then averaging over the distribu-
tion of cluster size, they obtain, for the long time tail,

G~ t !}e2~ t/t0!b
, b5

DS

DS1d
5
2

5
. ~18!

Although it cannot be rigorously justified, Martin, Adolf, and
Wilcoxon propose a useful form ofG(t) for fitting the data:

G~ t !5St2ke2~ t/t0!b
. ~19!

Close to the gel point~t0→`, S→Sg , k→n! one once again
findsG(t)5Sgt

2n and the complex elastic modulus is thus
given byG*}( jv)n.

Martin, Adolf, and Wilcoxon’s relaxation function cannot
provide a simple analytical form forG* ~v! or for h* ~v! as
was the case with the Friedrich function. However, one can
calculate the limits values whenv→0:

lim
v→0

h85h05S
t0
12k

b
G S 12k

b D . ~20!

FIG. 6. h8 ~Pa s! versus angular frequencyv ~rad s21! at differ-
ent temperatures. The solid curves represent calculated values with
the parameters given in Table I~the Martin-Adolf-Wilcoxon
model!.

FIG. 4. Cole-Cole ploth9 ~Pa s! versush8 ~Pa s!.

FIG. 5. h9 ~Pa s! versus angular frequencyv ~rad s21! at
T537.8 °C:ddd, experimental points; ----, curve fitting with the
Friedrich-Heymann-Berger relaxation function; —, curve fitting
with the Martin-Adolf-Wilcoxon function.
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As G*5 jvh* one obtainsG9}v if v→0. Similarly,

lim
v→0

h95Sv
t0
22k

b
G S 22k

b D . ~21!

One also obtainsG8}v2 if v→0. The expression of the
creep compliance can be deduced from the previous result:

Je
05

b

S
t0
k

GS 22k

b D
G2S 12k

b D . ~22!

So the only way to obtainh* fromG(t) is to calculate the
Fourier transform numerically. Great care is necessary in
carrying out the calculations. In particular the functionG(t)
must be digitized over a very large time interval. Moreover,
as the functionsG(t)sin(vt) andG(t)cos(vt) oscillate very

rapidly whenv is large, a very large number of points are
necessary to define them correctly. Let us indicate that for
v50 it is possible to verify the accuracy of the numerical
calculation since the results can also be obtained by means of
the analytical form@Eq. ~20!#.

We developed a nonlinear regression program able to de-
termine the best values ofS,t0 ,b,k. It can be seen in Fig. 5
that the Martin-Adolf-Wilcoxon law yields better results than
the Friedrich-Heymann-Berger law. Figures 6 and 7 show
that we obtain very good agreement between the experimen-
tal data@h8~v! andh9~v!# and the calculated curves.

The parametersS,k,b,t0 are given in Table I. This table
has been completed with values ofh0 and thenJ e

0 either
determined directly from theG8~v! or G9~v! curves @Eq.

FIG. 8. Variations of the gel strengthS versus T2Tg in
°C. Tg is the gel temperature:3 is the value ofSg calculated with
Eq. ~23!. ~If T→Tg , thenS→Sg .!

FIG. 7. h9 ~Pa s! versus angular frequencyv ~rad s21! at differ-
ent temperatures. The solid curves represent calculated values with
the parameters given in Table I~the Martin-Adolf-Wilcoxon
model!.

TABLE I. Best values ofS, t0, b, andk calculated by curve fitting~the Martin-Adolf-Wilcoxon model!.
The asterisks denoteh0 andJe

0 determined directly from theG8~v! andG9~v! curves@Eq. ~14!#. The other
values are calculated with Eqs.~20! and ~22!.

T ~°C! S
h0

~Pa s!
Je
0

~1023 Pa21!
t0

~1022 s! b k

60 1.71* 1.15*
55 2.0* 1.4*
50 2.4* 1.8*
45 3.1* 2.5*
42 4.0* 4.8*
40 3.2 5.9 10.1 5.4 0.433 0.760
39.5 3.9 6.9 10.8 7.4 0.458 0.743
39 4.5 8.2 14.1 11.2 0.464 0.730
38.7 5.0 9.7 18.6 15.1 0.448 0.725
38.4 5.6 11.6 26.9 23.0 0.439 0.714
38.1 6.2 14.3 33.3 38.1 0.455 0.706
37.8 7.1 18.4 54.9 58 0.418 0.701
37.4 9.2 28.6 84.3 127 0.420 0.680
37.0 11.1 59.5 196 740 0.450 0.665
36.0 18.6 0.620
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~14!# or calculated from relationships~20! and ~22!.
We can see thatb is nearly a constant. The mean value

obtained is 0.44, which is in accordance with the Martin-
Adolf-Wilcoxon predictions~b50.4!.

We have reported in Figs. 8 and 9 the variations ofS and
k versus temperature. Figures 10–12 display variations of
h0, J e

0, andt0 as a function of temperature. It can be seen
that these three quantities diverge at the gel point. However,
it is not possible to determine the corresponding critical ex-
ponents since the prefactors are unknown functions of tem-
perature.

As we have already pointed out, at the gel point the re-
laxation function is given byG(t)5Sgt

2n. After the Fourier

transform the following variations ofG8 andG9 versusv are
obtained:

G85SgG~12n!cos~np/2!vn,

G95SgG~12n!sin~np/2!vn. ~23!

The loss angled is given byd5np/2. tan~d! is indepen-
dent ofv. This observation is used to determine reliably both

FIG. 9. Variations ofk versusT2Tg in °C. Tg is the gel
temperature:3 is the value ofn calculated with Eq.~23!. ~If
T→Tg , thenk→n.!

FIG. 10. Increase of viscosityh0 ~Pa s! when the temperature is
close to the gel temperature:3, calculated with Eq.~14!; d, calcu-
lated with Eq.~20!.

FIG. 11. Increase of the creep complianceJe
0 ~Pa21! when the

temperature is close to the gel temperature:3, calculated with Eq.
~14!; d, calculated with Eq.~22!.

FIG. 12. Increase of the characteristic timet0 ~s! when the tem-
perature is close to the gel temperature. They axis is expressed in
decimal logarithmic scale.
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the gelation temperature and the value ofn at the gel point. If
variations of tan~d! versus temperature are plotted at various
frequencies, one should obtain curves that intersect atTg .
The value of they axis at this point can be used to obtainn.
This method is useful when the gel point is not known accu-
rately or when the measurements have not been carried out
rigorously atTg . Figure 13 gives an example of this deter-
mination.

When the determinations ofG8 and G9 are conducted
rigorously at the gel point, the curvesG8~v! andG9~v! ~on a
log-log scale! are straight lines throughout the domain of
accessible frequencies. This is the case in the example given
in Fig. 14. An analysis of these straight lines can also be
used to determinen, as well as the value ofSg @Eq. ~23!#.
The values ofSg andn obtained by this means are positioned
satisfactorily on the curves giving variations ofS andk ver-
sus temperature~Figs. 8 and 9!. The exponentn obtained
when the concentration is varied~between 0.17 and 0.40
g cm23! is almost a constant, with mean valuen50.62.

Finally, let us recall that according to Scalan and Winter
@30#, Sg follows a law of the type

Sg5AC2t. ~24!

For our gelatin solutions, Eq.~24! appears to be verified as
shown in Fig. 15. The slope obtained is equal to 4.5, which is
consistent with Scalan and Winter’s results.

V. CONCLUSION

We conducted a complete study of the rheological prop-
erties in a dynamic regime of gelatin solutions as a function
of temperature. This study enabled us to verify that gelatin
solutions behaved like classical polymer solutions at high
temperatures. For low values of the shearing frequency, the
moduliG8 andG9 are proportional tov2 andv.

The master curves representing the values ofG8 andG9
versusv show no rubbery plateau. This important result
seems to indicate that the gelatin molecules in relatively con-
centrated solutions are not in an entangled regime.

In the vicinity of the gel point, Martin, Adolf, and Wil-
coxon’s relaxation functionG(t) provides a very good fit
with experimental results. The gel strength and characteristic
time are determined in the whole transition zone preceding
the gel point.

At the gel point we verify that the moduliG8 andG9 are
proportional tovn. The value ofn obtained does not depend
on the concentration of the gelatin solution.
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FIG. 14. log-log plot of the frequency dependence of the storage
modulusG8 ~Pa! and loss modulusG9 ~Pa! at the gel temperature,
along with the determination ofSg andn, calculated with Eq.~23!.
The x,y axes are expressed in decimal logarithmic scale.

FIG. 13. tan~d! as a function of temperature~in °C! is shown at
various frequencies, along with the determination of the gel tem-
peratureTg and the critical exponentn.

FIG. 15. Variations of the gel strengthSg versus concentration
C ~in g cm23!. The slope of the straight line is 4.5. Thex,y axes are
expressed in decimal logarithmic scale.

6132 53PEYRELASSE, LAMARQUE, HABAS, AND EL BOUNIA



@1# W. F. Harrington and N. V. Rao, Biochemistry9, 3714~1970!.
@2# S. B. Ross-Murphy, Polymer33, 2622~1992!.
@3# M. Djabourov and P. Papon, Polymer24, 537 ~1983!.
@4# M. Djabourov, Polym. Inter.25, 135 ~1991!.
@5# P. J. Flory,Principles of Polymer Chemistry~Cornell Univer-

sity Press, Ithaca, 1953!.
@6# W. H. Stockmayer, J. Chem. Phys.11, 45 ~1943!.
@7# H. J. Herrmann, D. P. Landau, and D. Stauffer, Phys. Rev.

Lett. 49, 412 ~1982!.
@8# R. M. Ziff, in Kinetics of Aggregation and Gelation, edited by

F. Family and D. Landau~North-Holland, Amsterdam, 1984!,
p. 191.

@9# D. Stauffer, Introduction to Percolation Theory~Taylor and
Francis, London, 1985!.

@10# D. Stauffer, A. Coniglio, and M. Adam, Adv. Polym. Sci.44,
103 ~1982!.

@11# P. G. de Gennes,Scaling Concepts in Polymer Physics~Cor-
nell University Press, Ithaca, 1979!.

@12# P. G. de Gennes, J. Phys.~Paris! Colloq. 4, C3-17~1980!.
@13# D. Lairez, D. Durand, and J. R. Emery, J. Phys.~France! II 1,

977 ~1991!.
@14# M. Adam and M. Delsanti, Contemp. Phys.30, 203 ~1983!.
@15# M. Adam, M. Delsanti, J. P. Munch, and D. Durand, Physica,

163, 85 ~1990!.
@16# B. Gauthier Manuel and E. Guyon, J. Phys.~Paris! 41, L503

~1980!.
@17# M. A. V. Axelos and M. Kolb, Phys. Rev. Lett.64, 1457

~1990!.
@18# Y. Wang, Q. Z. Zang, M. Konno, and S. Saito, Chem. Phys.

Lett. 186, 463 ~1991!.
@19# M. Adam and J. P. Aime, J. Phys. France II1, 1277~1991!.

@20# M. Djabourov, J. Leblond, and P. Papon, J. Phys.~Paris! 49,
333 ~1988!.

@21# D. Duran, M. Delsanti, M. Adam, and J. M. Luck, Europhys.
Lett. 3, 97 ~1987!.

@22# Y. G. Lin, D. T. Mallin, J. C. V. Chien, and H. H. Winter,
Macromolecules24, 850 ~1991!.

@23# E. J. Amis, D. F. Hodgson, and Q. Yu, Polym. Prep.32, 447
~1991!.

@24# P. Matricardi, M. Dentini, and V. Crescenzi, Macromolecules
26, 4386~1993!.

@25# C. Michon, G. Cuvelier, and B. Launay, Rheol. Acta32, 94
~1993!.

@26# M. Takahashi, K. Yokoyama, and T. Masuda, J. Chem. Phys.
101, 798 ~1994!.

@27# J. E. Martin, D. Adolf, and J. P. Wilcoxon, Phys. Rev. Lett61,
2620 ~1988!.

@28# H. H. Winter and F. Chambon, J. Rheol.30, 367 ~1986!.
@29# F. Chambon and H. H. Winter, J. Rheol.31, 683 ~1987!.
@30# C. Scalan and H. H. Winter, Macromolecules24, 47 ~1991!.
@31# R. Muller, E. Gerard, P. Dugand, P. Rempp, and Y. Gnanou,

Macromolecules24, 1321~1991!.
@32# A. Isuka, H. H. Winter, and T. Hashimoto, Macromolecules

25, 2422~1992!.
@33# M. Daoud, J. Phys. A21, L237 ~1988!.
@34# M. Daoud and A. Lapp, J. Phys. Condens. Matter2, 4021

~1990!.
@35# M. Mathukumar, Macromolecules22, 4658~1989!.
@36# C. W. Nan and D. M. Smith, Mater. Sci. Eng. B10, L1 ~1991!.
@37# M. Lamarque and J. Peyrelasse~unpublished!.
@38# C. Friedrich, L. Heymann, and H. R. Berger, Rheol. Acta28,

535 ~1989!.
@39# J. E. Martin, D. Adolf, and J. P. Wilcoxon, Phys. Rev. A39,

1325 ~1989!.

53 6133RHEOLOGY OF GELATIN SOLUTIONS AT THE SOL-GEL . . .


